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1 Code Description
The conservation laws are discretized by the correction procedure via reconstruction
(CPR) scheme with DG correction functions [1–4] The divergence of the inviscid fluxes
are determined either through a chain rule or Lagrange polynomial approach. The Roe
flux [5] is employed as the common interface flux and the BR2 scheme [6–8] for the viscous
flux. As for boundary conditions, Riemann invariants are used in the far-field, while either
slip or adiabatic non-slip on the walls. The dynamic viscosity coefficient is either held
constant throughout the computational domain or obtained from the Sutherland’s law.
Artificial viscosity is used to stabilize the solution in the presence of shocks. A smoothness
indicator [9] is used to flag cells where viscosity has to be added. A smoothing algorithm
is then used to obtain a continuous (C0) artificial viscosity field for enhanced robustness.
Steady state solutions are obtained using a Newton-Krylov algorithm, which serves as the
primary solver. The sparse linear system of equations are solved using GMRES included
in the PETSc package version 3.2-p7, while preconditioning is provided by a block-Jacobi
method. Often several block-Jacobi iterations are performed before GMRES is employed.
The solver is parallelized using MPI via Open MPI, version 1.4.3 where grid partitioning
is achieved through ParMETIS. An implicit-explicit (IMEX) scheme serves as a secondary
solver, where a three-stage diagonally implicit Runge-Kutta (DIRK) is used. Each stage
is split between an explicit and implicit sub-stage, where the non-stiff regions are solved
with an explicit RK, while the stiff portions are solved through the above stated Newton
approach. Post-processing is typically performed with Tecplot 360 and/or Gmsh version
2.8.5.

2 Case Summary
The case considered is the flow over a NACA 0012 airfoil in subsonic inviscid, subsonic
laminar and transonic inviscid flow regimes. The flow conditions for the three subcases
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Figure 1: Density residual convergence for P3 solutions of the subsonic inviscid and viscous
cases (on mesh ref4, 35840 elements).

are as follows:

1. Subsonic inviscid flow: α = 2o, M∞ = 0.5;

2. Subsonic laminar flow: α = 1o, M∞ = 0.5 , Re = 5000, µ = cst;

3. Transonic inviscid flow: α = 1.25o, M∞ = 0.8 (not considered in the present study).

The L2 norm of the density residuals is monitored to assess the convergence of the
iterative solution by ensuring that the initial residuals are reduced by at least 10 orders
of magnitude. The residuals are computed following the workshop guidelines. Exam-
ples of density residual convergence are shown on Figure 1. As mentionned in the code
description, block-Jacobi iterations are used to initiate the computation (150 and 100
block-Jacobi iterations for the inviscid and viscous cases presented on Figure 1 respec-
tively). GMRES iterations then follow to converge the solution to steady state.

The Guillimin cluster which belongs to the McGill high performance computing (MHPC)
infrastructure and to the Compute Canada HPC network, served for the most intensive
computations that used up to 16 cores in parallel on three different architectures: sw/lm,
sw2/lm2 and xlm2. The rest of the calculations were performed on a quad-core personal
computer (PC). Specifications and Taubench results for these machines are presented in
Table 1.
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Machine name Specifications Taubench CPU time
MHPC–sw/lm Dual Intel Westmere EP Xeon X5650 9.5 s

6-core, 2.66 GHz, 12MB Cache, 95W
MHPC–sw2/lm2 Dual Intel Sandy Bridge EP E5-2670 8.1 s

8-core, 2.6 GHz, 20MB Cache, 115W
MHPC–xlm2 Quad Intel Sandy Bridge EP E5-4620 11 s

8-core, 2.2 GHz, 16MB Cache, 95W
PC Intel i7-3770 CPU 5.2 s

4-core, 3.40 GHz, 8MB Cache

Table 1: Computer specifications and TauBench CPU times

3 Meshes
The quadrilateral meshes provided for the workshop have been used in this case. These P4
meshes have been converted to P1 (straight edges). Nodes on the curved boundary were
then added based on the analytical definition of the airfoil and cubic spline interpolation.
Six grids ranging from 140 (ref0) to 143 360 cells (ref5) with P1 to P9 elements were used
to perform hp-refinement studies.

4 Results

4.1 Subsonic Inviscid Case

Figures 2 and 3 present the lift and drag coefficients obtained for several meshes and poly-
nomial orders. These plots demonstrate convergence of the aerodynamic coefficients as
the discretization is refined. Since no adaptive computation have been carried out for this
case, the reference lift and drag coefficients were determined via Richardson extrapolation
to a zero mesh size value for each polynomial degree. The reference values obtained in this
manner are listed in Table 2. In the absence of an adaptive solution, this process seems to
give useful reference values although not thoroughly reliable. Since the theoretical value
of the drag coefficient is known to be zero, the lowest extrapolated drag coefficient value
(from the P9 solution) is used as a common reference value. Figures 4 and 5 present
convergence of the error on lift and drag coefficients based on these reference values.
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Figure 2: Lift coefficient convergence for the subsonic inviscid case.
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Figure 3: Drag coefficient convergence for the subsonic inviscid case.

Polynomial degree Lift coefficient Cl Drag coefficient Cd

P1 0.28860776

2.1066703×10−6

P2 0.28647954
P3 0.28647845
P4 0.28647901
P5 0.28647885
P9 0.28647948

Table 2: Reference lift and drag coefficients for the subsonic inviscid case.
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Figure 4: Lift coefficient error convergence for the subsonic inviscid case.
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Figure 5: Drag coefficient error convergence for the subsonic inviscid case.
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4.2 Subsonic Viscous Case

Figures 6 and 7 present the lift and drag coefficients obtained for several meshes and
polynomial orders. These plots demonstrate convergence of these aerodynamic coefficients
as the discretization is refined. Similar to the subsonic inviscid case, the reference lift and
drag coefficients were determined via Richardson extrapolation to a zero mesh size value
for each polynomial degree. The reference values obtained in this manner are given in
Table 3. Figures 8 and 9 present convergence of the error on lift and drag coefficients
based on these reference values.

Polynomial degree Lift coefficient Cl Drag coefficient Cd

P1 0.018710 0.054985
P2 0.018323 0.055311
P3 0.018062 0.055263
P4 0.018469 0.055291
P5 0.018662 0.055362
P6 0.018269 0.055320

Table 3: Reference lift and drag coefficients for the subsonic laminar case.
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Figure 6: Lift coefficient convergence for the subsonic viscous case.
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Figure 7: Drag coefficient convergence for the subsonic viscous case.
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Figure 8: Lift coefficient error convergence for the subsonic viscous case.
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Figure 9: Drag coefficient error convergence for the subsonic viscous case.

References
[1] H. T. Huynh. A flux reconstruction approach to high-order schemes including discon-

tinuous Galerkin methods. In 18th AIAA Computational Fluid Dynamics Conference,
Miami, FL, June 2007. American Institute of Aeronautics and Astronautics, AIAA
Paper 2007-4079.

[2] H. T. Huynh. High-order methods including discontinuous Galerkin by reconstructions
on triangular meshes. In 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January
2011. American Institute of Aeronautics and Astronautics, AIAA Paper 2011-44.

[3] Z. J. Wang and H. Gao. A unifying lifting collocation penalty formulation including
the discontinuous Galerkin, spectral volume/difference methods for conservation laws
on mixed grids. Journal of Computational Physics, 228(21):pp. 8161–8186, 2009.

[4] Z. J. Wang. Adaptive High-Order Methods in Computational Fluid Dynamics, volume 2
of Advances in Computational Fluid Dynamics. World Scientific Pub., 2011.

[5] P. L. Roe. Approximate riemann solvers, parameter vectors, and difference schemes.
Journal of Computational Physics, 43(2):pp. 357–372, 1981.

[6] F. Bassi, A. Crivellini, S. Rebay, and M. Savini. Discontinuous Galerkin solution of the
Reynolds-averaged Navier-Stokes and k − ω turbulence model equations. Computers
& Fluids, 34(4):pp. 507–540, 2005.

[7] F. Bassi and S. Rebay. A high order discontinuous Galerkin method for compressible
turbulent flows. In Discontinuous Galerkin Methods, pages 77–88. Springer, 2000.



9

[8] F. Bassi and S. Rebay. GMRES discontinuous Galerkin solution of the compressible
Navier-Stokes equations. In Discontinuous Galerkin Methods, pages 197–208. Springer,
2000.

[9] P.-O. Persson and J. Peraire. Sub-cell shock capturing for discontinuous Galerkin
methods. In 44th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2006.
American Institute of Aeronautics and Astronautics, AIAA Paper 2006-112.


	Code Description
	Case Summary
	Meshes
	Results
	Subsonic Inviscid Case
	Subsonic Viscous Case


